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Buildings need improvement

<

Most significant single source of emissions

<

2/3 of global electricity consumed by buildings

<

1/3 of global waste produced by buildings

<

40% of USA GHG emissions

<

% Impact: now 2 °C of warming is almost guaranteed
< Mitigation + Adaptation

.. but it’'s complicated

World Resources Institute

World GHG Emissions Flow Chart
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Both Mitigation & Adaptation

We? are reducing emissions
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Why?
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Mitigation Goal
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Todays Lecture:

Energy and buildings (Thermodynamics)
...in 2 parts (Laws)

Energy and buildings (Thermodynamics)
... in 2 parts (Laws)

% Ist law and buildings

% Heat transfer: Conduction - Convection - Radiation
Walls - Doors - Windows

% 2nd law and buildings

% Buildings are more than Walls, Doors and Windows




Heating and 1st part (law)

< Energy balance defines
building operation

|
i

Energy in = Energy out

Ephy= |10kW| = Up(aT)
E . — B <upply 3
out m Boiler Window FEL1]
Heat Pump Wall -
% Performance defined by envelope Solar Roof g
% Determines energy demand E

Heating and 1st Law

% Insulation (Conduction)
Qross = U « Ax AT

% Ventilation (Convection)

Energy in = Energy out

Equppy = 10 kW

Qross = 10 Cp,air * AT Boiler Window

. L. Heat Pump Wall

% Insolation (Radiation) Solar Roof
anin = Lsun * AxSHT

Insulation Quoss = U x Ax AT

Insuation...
Why Glass!?!

QZOSSIU*A*AT

Q = heat

1
U = — =insulati
R = insulation




Jonathan Choe

AT = temperature change

Insulation =

0O, = heat transfer rate through envelope, Watts
U = overall heat transfer coefficient, W/m?-K

A =wall area, m?

AT = temperature difference (in to out), °C or °K
k,, = wall thermal conductivity, W/m-K

h = convection coefficient, W/m2-K

x,, = wall thickness, m

__AT-T)
&= x, 1
tox 1

n ok, h
1 1)
Us=|—+Zes—
n ok, h

R or U-Value

out

Q=h-4(T,-T, Q=h,4(T,-T)
convection convection
interior exterior

Thermal Bridging

11127103 7:36:41 AM e=0.96

3:41 AM e=0.96

The air and error in Buildings




Building Ventilation

Qloss = 10 * Cp,air * AT ! -

Ventilation energy
relationship

% e L0

Where does weight go
when you lose weight

Indoor Air Quality

SOURCES OF INDOOR POLLUTANTS

Building Ventilation

% Regulations require
% 10-30 m3/hr per person or 5-15 cfm per person
% 1-5 m3/hr or m2 of building
% Quantify ventilation losses also by number of
people or area times ventilation rate

Qloss =1 * Cp,air * AT




How leaky is this building?

Common Household
Air Leaks
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Leaky buildings

Histogram of air exchange rates of 33
homes i Princeton aces
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Understanding error

% Air leakiness may change by a factor of 2-3!

< Can you approximate the size of this room?

INSOLation

Qgain = Isun ¥ Ax SHT

i

Isun = 1TkW

“shortwave”

“longwave”’
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Review = Energy Balance

% Insulation (Conduction)
Qross = U x A x AT

%+ Ventilation (Convection)

Energy in = Energy outfti=\|

ssssss

s

=

=
T} B (7T

Qloss =1 * Cp,air * AT
% Insolation (Radiation)

Qgain = Lsyn * Ax SHT

What are we forgetting?

What are we forgetting!?

® YOU! ... and your stuff

Example

® Your room performance...

We need a full view of
performance
part 2 (2nd Law)

Part 2
Why (and how) Glass!




Qdemand -

Qdemand -

Requires a better
understanding of value

It’s all about the Benjamins
(or Grant? or Ishak?)

50 dollars 50 dollars

Both amount and value matter

50 dollars US * 50 dollars Sing

What about energy?

50 kWh 50 kWh




Must consider amount and value

50 kWh heat * 50 kWh elec

energy systems are designed with the
wrong exchange rate

.. thermodynamics can help

EXERGY

Ist law + 2nd law

EXERGY

energy + entropy

for architects?
..and you!

Low Exergy




LOwEX

Exergy fundamentals

% Ist and 2nd Laws of Thermodynamics

% Combination of Energy and Entropy Balances

Energy Out = Energy In

Eout = Ein
Entropy Out = Entropy In + Entropy Generated

Sout = Sin + Sgen

Exergy of Electricity

Exergy in an isothermal reversible system has 100% potential
Heat # 100% Exergy

Electricity ~ 100% Exergy

Exergy equation

Exergy = Energy - Anergy OR Energy = Exergy + Anergy

Ez =[F —T,9]
Ex = [E — An]
E=FEx+ An

Exergy of heat

% Constant heat, Q, and Temperature, T
% Anergy is the required heat dissipation of a cycle
Anergy = Entropy - Reference Temperature, To

Br-Q-Tus=Q-T [ °F

e —0-12 —0_ 00 nera
Ex=Q TngQ QT}Anugy

Th T-Ty
sa(e- )77

equations are the detailed way of saying
temperature matters




No combustion in buildings!

% 1000 °C or higher to
heat a 20 °C room

% 90% exergy loss

Exergy and Buildings

< Exergy reveals the potential of the supply and the
real value of the demand

Quoss Nener
w7 Noxergy
0.2 kW| /\ " -
Tret

8°c
Qin EXutit

1kW

= Room Air
Fin ] = Qout EXcon 20°C

0zkw| [ T10kw
Energy in = Energy Out

[10kW_ 1000 °C|

Combustion
Boiler

HHAHHH

Heat pumps, not fire

Heat
Supply

Exergy In
(Electricity)

Condenser

Expansion Valv
< Instead creating heat, we move heat
% thermodynamic refrigeration cycle

% Coefficient of Performance (COP)
% Ratio of heat output to electricity (VWork/Exergy) input

COoP = qupply

input

Heat pumps, not fire

Heat
Supply

Air
Heat T=0°C
Source

% Instead creating heat, we move heat a
% thermodynamic refrigeration cycle

% Coefficient of Performance (COP)

T=8°C
% Depends on temperatures Ground
Heat l
COP _ g . Tsupply Source = T=15°C
Tsupply - Tsource

Heat pumps = AC

Air
Heat T=0°C
Sink’

% Chillers are just reverse heat pumps a
% same thermodynamic refrigeration cycle

%+ Coefficient of Performance (COP)

T=8°C
% Still depends on temperatures Ground
Heat l
COP — g . Tsupply Source | T=15°C
Tsupply - Tsou’rce

Heat pumps = AC

Cooling
Supply
Air
Heat T=35°C
Sink

% Chillers are just reverse heat pumps ¥

% same thermodynamic refrigeration cycle
%+ Coefficient of Performance (COP)

% Still depends on temperatures Ground
Heat

COP = g- Tsupply Sink
Tsupply — Tsource




Performance and temp

Qou,l, =g Tcmpply
Win

COP =

Tsupply - Tsource

Nonfeasible

Typical HP

25 20 15 10
Temperature Lift (Kelvin)

Traditional paradigm

% Increase efficiency by reducing demand

Energy In

Traditional paradigm

% Better insulation reduces energy demand

e

ﬁ ) = —
Energy In

Think outside the box

% Consider the potential of the energy consumed

Think outside the box

% The exergy represents that potential

Think outside the box

% Temperature has influences on performance that
should not be ignored




a new paradigm of appropriate
temperatures will uncover higher
potential

Geothermal

Systems

rrrrr

Geothermal gradient

Relevance in Princeton

©

) Geothermal hole -~ - Sft
in ground =
' ‘i'-':- S
>400 hoIes
500 ft
Heating Cooling
Swiss example deep borehole
N 11 R
'-':.‘E: 1 ¢ % 4 W'ﬁ F e T 1 e
7\_%7 P%Lm- — - Saf
‘‘‘‘‘‘‘‘ E ®:: N
® o® = =
,,,,,,,,,,,,,,,,, [ 1Ne JELE




Technology adaption

Hybrid PV thermal

Inexpensive low temperature extraction

Technology adaption

% Hybrid solar (CHP) experimental validation
% 12-14% electrical efficiency and 40-50% thermal

% 30 °C heat valuable for LowEx systems

Technology integration
(S

()
co2 col~

exhaust flap

LED light
in exhaust

Slab integration

intake through
facade + wind
= psuedo-wind-power

What does this mean for
designing buildings?

N
Part 1 4 a in, A
determine t. ,_.r:
demand v 7= i

Part 2
Optimize System

System Losses

ElSTOT




What is missing from the chain? What is missing from the chain?

YOU!! ... again!

Optimize System Optimize System
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Occupant comfort, NOT room comfort Controls need to smarter... better than NEST
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Campus as a Lab!

We have a lot of buildings!




Buildings Heated by CHP Plant

Buildings Cooled with Chilled Water

1 ‘! LI 3

Va ol b
=L JCXs

Where is the Campus as a lab?

Princeton
School of Architectur
1950’s




New Arch Lab at Princeton
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Questions

Thanks:

Eric Teitelbaum
Hongshan Guo
Jake Read




